欧美第一页,亚洲欧美日韩国产,狠狠色欧美亚洲狠狠色WWW,欧美精品视频一区二区三区

當(dāng)前位置: > 學(xué)術(shù)報(bào)告 > 理科 > 正文

理科

孤子方程和黎曼希爾伯特方法

發(fā)布時(shí)間:2015-06-23 瀏覽:

講座題目:孤子方程和黎曼希爾伯特方法

講座人:Spyridon Kamvissis 教授

講座時(shí)間:09:30

講座日期:2015-6-23

地點(diǎn):長(zhǎng)安校區(qū) 文津樓三段612室

主辦單位:計(jì)算機(jī)科學(xué)學(xué)院,計(jì)算智能團(tuán)隊(duì)

講座內(nèi)容:The asymptotic analysis of so-called completely integrable PDEs is often reducible to the asymptotic analysis of Riemann-Hilbert matrixfactorization problems in the complex plane or a Riemann surface. This is achieved through a deformation method, initiated by Its, and madesystematic and rigorous by Deift and Zhou. Although it is often known as the nonlinear steepest descent method,it is only fairly recently that the term "steepest descent" has been justified, properly speaking steepest descent contours have been constructed, and the method has achieved it full power. In my talk I will illustrate this asymptotic method by considering the case of the semiclassical focusing NLS problem. I will explain how the nonlinear steepest descent method gives rise to a maxi-min variational problem for Green potentials with external field in an infinite sheeted Riemann surface and I will describe results on existence and regularity of solutions to this variational problem. The solutions are the steepest descent contours (S-curves; trajectories of quadratic differentials) together with their equilibrium measures.

高清无码另类| 人人妻逼视频| 久久夜色精品国产网站| 日韩人妻中字精品一区| 偷拍视频精品视频| 91久久精品国产91久久| 国产夜夜久久| 日韩一区二区色色色| 小蜜桃| 国产 中文 亚洲 日韩 欧美| 国产精品久久不能| 亚洲老熟妇熟妇| 婷婷色网| 日日日天天日| 久久久5| 日韩Aⅴ高清在线| 亚洲精品无码你懂的网站| 久久精品人人做| 婷婷十月综合网| 高清无码在线观看av| 男人捅爽女人的视频| 国产成人一区二区三区在线| 午夜黄色电影9| 亚洲一区二区无码国产| 久久久噜噜噜久久熟女AA片 | 黄频视频大全免费的国产| 六月婷婷色色| 欧美 专区日韩| 91污在线观看一区二区三区 | 另类欧美一区二区| 色一区二区| 国产精品国产精品| 97超碰。。。| 欧美午夜另类| 日本乱偷人妻中文字幕在线| 免费在线无码视频观看| 97日韩视频在线一区| 久久久国产成人噜噜噜噜| 日韩人妻无码一区二区三区久久| 狠狠橾夜夜橾夜夜爽| 日本九九九区在线视频|